МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Иркутской области

Департамент образования Нижнеилимского района

МОУ Новоилимская СОШ им. Н.И. Черных

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДЕНО
руководитель ШМО естественно- математического цикла	заместитель директора по УВР	директор МОУ "Новоилимская СОШ им. Н.И. Черных"
Сенюшкина С.Н. Протокол №1 от «30» августа 2023 г.	Истомина О.П. от «30» августа 2023 г.	Погодаева Н.А. Приказ №273 от «30» августа 2023 г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Химия. Базовый уровень»

для обучающихся 11 класса

Пояснительная записка

Программа составлена на основе Федерального компонента государственного образовательного стандарта среднего общего образования (ФК ГОС).

Место предмета в учебном плане: инвариантная часть. Предметная область: естествознание.

Цели изучения химии:

- 1. Формирование умения видеть и понимать ценность образования, значимость химического знания для каждого человека, независимо от его профессиональной деятельности.
- 2. Формирование умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию.
- 3. Формирование целостного представления о мире и роли химии в создании современной естественнонаучной картины мира; умения объяснять объекты и процессы окружающей действительности (природной, социальной, культурной, технической среды), используя для этого химические знания.
- 4. Приобретение опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков, имеющих универсальное значение для различных видов деятельности (навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, навыков безопасного обращения с веществами в повседневной жизни).

Количество учебных часов, на которые рассчитана программа:

Класс	11класс
Количество учебных недель	33
Количество часов в неделю, ч/нед	1
Количество часов в год, ч	33

При реализации программы используются учебники, включенные в федеральный перечень¹:

Автор/авторский коллектив	Наименование учебника		Издатель учебника
О.С.Габриелян	Химия (базовый уровень)	11	Просвещение

Требования к уровню подготовки учащихся 11-го класса:

Учащиеся в результате усвоения раздела должны знать/понимать:

- важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительная атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, растворы, неэлектролит, электролитическая диссоциация, электролит И окислитель восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;
- *основные законы химии*: сохранение массы веществ, постоянства состава, периодический закон;
- основные теории химии: химической связи, электролитической диссоциации, строения органических соединений;
- важнейшие вещества и материалы: основные металлы и сплавы; серная, соляная, азотная и уксусная кислоты; щёлочи, аммиак, минеральные удобрения, метан, этилен, ацетилен; бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы;

уметь:

- называть изученные вещества по «тривиальной» и международной номенклатуре;
- определять: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединений, окислитель и восстановитель, принадлежность веществ к различным классам органических соединений;
- характеризовать: элементы малых периодов по их положению в Периодической системе Д.И. Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и химические свойства изученных органическихсоединений;
- объяснять: зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов;
- выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ;
- проводить самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и еè представления в различных формах;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- ✓ объяснения химических явлений, происходящих в природе, быту и на производстве;
- ✓ определения возможности протекания химических превращений вразличных условиях и оценки ихпоследствий;
- ✓ экологически грамотного поведения в окружающей среде;
- ✓ оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- ✓ безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;
- ✓ приготовления растворов заданной концентрации в быту и на производстве;
 - ✓ критической оценки достоверности химической информации, поступающей из разных источников.

СОДЕРЖАНИЕ КУРСА ХИМИИ 11 класс

Периодический закон и строение атома

Открытие Д.И. Менделеевым Периодического закона. Важнейшие понятия химии: атом, относительная атомная и молекулярная массы. Открытие Д.И. Менделеевым Периодического закона. Периодический закон в формулировке Д.И. Менделеева.

Периодическая система Д.И. Менделеева как графическое отображение Периодического закона. Различные варианты Периодической системы. Периоды и группы. Значение Периодического закона и Периодической системы.

C т p о e н u e а т о m a. Атом — сложная частица. Ядро атома: протоны u нейтроны. Изотопы. Электроны. Электронная оболочка. Энергетический уровень. Орбитали: s- u p-. Распределение электронов по энергетическим уровням u орбиталям. Электронные конфигурации атомов химических элементов. Валентные возможности атомов химических элементов.

Периодического элемента. Современная формулировка Периодического закона. Причина периодичности в изменении свойств химических элементов. Особенности заполнения энергетических уровней в электронных оболочках атомов переходных элементов. Электронные семейства элементов: *s-* и *p-*элементы.

Строение вещества

К о в а л е н т н а я х и м и ч е с к а я связь. Понятие о ковалентной связи. Общая электронная пара. Кратность ковалентной связи. Электроотрицательность. Ковалентная полярная и ковалентная неполярная химические связи. Обменный и донорно-акцепторный механизмы образования ковалентной связи. Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

И о н н а я х и м и ч е с к а я с в я з ь. Катионы и анионы. Ионная связь как крайний случай ковалентной полярной связи.

Металлические свойства металлов. Славы.

Агрегатныесостояния вещества. Газы. Закон Авогадро для газов.

Молярный объем газообразных веществ (при н.у.). Жидкости.

В о д о р о д н а я х и м и ч е с к а я с в я з ь. Водородная связь как особый случай межмолекулярного взаимодействия. Механизм ее образования и влияние на свойства веществ (на примере воды).

Т и п ы к р и с т а л л и ч е с к и х р е ш е т о к. Кристаллическая решетка. Ионные, металлические, атомные и молекулярные кристаллические решетки. Аллотропия. Аморфные вещества.

Ч и с т ы е в е щ е с т в а и с м е с и. Смеси и химические соединения. Гомогенные и гетерогенные смеси. Массовая и объемная доли компонентов в смеси. Массовая доля примесей. Решение задач на массовую долю примесей.

Д и с п е р с н ы е с и с т е м ы. Понятие дисперсной системы. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем.

Электролитическая диссоциация

Р а с т в о р ы. Растворы как гомогенные системы, состоящие из частиц растворителя, растворенного вещества и продуктов их взаимодействия. Массовая доля растворенного вещества. Типы растворов.

Теория электролиты и ческой диссоциации. Опектролиты и неэлектролиты. Степень электролитической диссоциации. Сильные и слабые электролиты. Уравнения электролитической диссоциации.

К и с л о т ы в свете теории электролитической диссоциации. Общие свойства неорганических и органических кислот. Условия течения реакций между электролитами до конца.

О с н о в а н и я в свете теории электролитической диссоциации, их классификация и общие свойства.

С о л и в свете теории электролитической диссоциации, их классификация и общие свойства. Электрохимический ряд напряжений металлов и его использование для характеристики восстановительных свойств металлов.

Г и д р о л и з. Случаи гидролиза солей. Реакция среды (pH) в растворах гидролизующихся солей.

Химические реакции.

К л а с с и ф и к а ц и я х и м и ч е с к и х р е а к ц и й. Классификация по числу и составу реагирующих веществ и продуктов реакции. Реакции разложения, соединения, замещения и обмена в неорганической химии.

Тепловой эффектхимические реакции. Термохимические уравнения. Расчет количества теплоты по термохимическим уравнениям.

С к о р о с т ь х и м и ч е с к и х р е а к ц и й. Понятие о скорости химических реакций, аналитическое выражение. Зависимость скорости реакции от концентрации, давления, температуры, природы реагирующих веществ, площади их соприкосновения. Закон действующих масс.

К а т а л и з. Катализаторы. Катализ. Примеры каталитических процессов в промышленности, технике, быту. Ферменты и их отличия от неорганических катализаторов. Применение катализаторов и ферментов.

Химическоеравновесие. Обратимые и необратимые реакции.

Химическое равновесие и способы его смещения на примере получения аммиака.

О к и с л и т е л ь н о - в о с с т а н о в и т е л ь н ы е п р о ц е с с ы. Окислительновосстановительные реакции. Окислитель и восстановитель. Окисление и восстановление. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Общиесь войстваметаллов. Химические свойства металлов как восстановителей. Взаимодействие металлов с неметаллами, водой, кислотами и растворами солей. Металлотермия.

Коррозия металлов. Способы защиты металлов от коррозии.

О б щ и е с в о й с т в а н е м е т а л л о в. Химические свойства неметаллов как окислителей. Взаимодействие с металлами, водородом и другими неметаллами. Свойства неметаллов как восстановителей. Взаимодействие с простыми и сложными веществами - окислителями.

Электролиза. Электролиз растворов и расплавов электролитов на примере хлорида натрия. Электролитическое получение алюминия. Практическое значение электролиза.

3 а к л ю ч е н и е. Перспективы развития химической науки и химического производства. Химия и проблема охраны окружающей среды.

Демонстрации. Различные формы Периодической системы Д.И. Менделеева. Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток «сухого льда» (или иода), алмаза, графита (или кварца). Модель молярного объема газов. Три

агрегатных состояния воды. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис. Эффект Тиндаля. Испытание растворов электролитов и неэлектролитов на предмет диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора. Примеры реакций ионного обмена, идущих с образованием осадка, газа или воды. Химические свойства кислот: взаимодействие с металлами, основными и амфотерными оксидами, основаниями (щелочами и нерастворимыми в воде), солями. Взаимодействие азотной кислоты с медью. Обугливание концентрированной серной кислотой сахарозы. Химические свойства щелочей: реакция нейтрализации, взаимодействие с кислотными оксидами, солями. Разложение нерастворимых в воде оснований при нагревании. Химические свойства солей: взаимодействие с металлами, кислотами, щелочами, с другими солями. Гидролиз карбида кальция. Изучение рН растворов гидролизующихся солей: карбонатов щелочных металлов, хлорида и ацетата аммония. Экзотермические и эндотермические химические реакции. Тепловые явления при растворении серной кислоты и аммиачной селитры. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Модель кипящего слоя. Разложение пероксида водорода с помощью неорганических катализаторов (FeCl₂, KI) и природных объектов, содержащих каталазу (сырое мясо, картофель). Простейшие окислительно-восстановительные реакции: взаимодействие цинка с соляной кислотой и железа с сульфатом меди (II). Модель электролизера. Модель электролизной ванны для получения алюминия.

Лабораторные опыты. Определение типа кристаллической решетки вещества и описание его свойств. Ознакомление с дисперсными системами.

Реакции, идущие с образованием осадка, газа или воды. Взаимодействие соляной кислоты с цинком, оксидом меди (II), гидроксидом меди (II), карбонатом кальция. Взаимодействие раствора гидроксида натрия с соляной кислотой в присутствии фенолфталеина, с раствором хлорида железа (III), с раствором соли алюминия. Взаимодействие раствора сульфата меди (II) с железом, известковой водой, раствором хлорида кальция. Получение гидрокарбоната кальция взаимодействием известковой воды с оксидом углерода (IV) (выдыхаемый воздух). Испытание индикатором растворов гидролизующихся и негидролизующихся солей. Реакция замещения меди железом в растворе сульфата меди (II). Получение кислорода разложением пероксида водорода с помощью диоксида марганца. Получение водорода взаимодействием кислоты с цинком. Ознакомление с препаратами бытовой химии, содержащих энзимы.

Практическая работа № 1. Получение и распознавание газов. **Практическая работа** № 2. Решение экспериментальных задач на идентификацию неорганических и органических соединений.

Тематическое планирование

№	Тема урока	
уp		
ок		
а		
	Тема1-2 «Строение атома» и «Строение вещества».	
1	Вводный инструктаж по технике безопасности. Основные сведения о строении атома.	
2	Периодическая система Д.И. Менделеева.	

	Становление и развитие периодического закона и теории химического строения.
	11
	Ионная химическая связь.
5	Ковалентная химическая связь.
6	Металлическая химическая связь.
7	Водородная химическая связь.
8	Полимеры.
9	Дисперсные системы.
	Контрольная работа №1.
11	Классификация химических реакций.
12	Классификация химических реакций.
13	Скорость химических реакций.
14	Обратимость химических реакций. Химическое равновесие.
15	Обратимость химических реакций. Химическое равновесие.
16	Гидролиз.
17	Гидролиз.
18	Окислительно-восстановительные реакции (ОВР).
19	Электролиз.
20	Практическая работа №1 «Решение экспериментальных задач по теме «Химическая
	реакция»»
	Металлы.
	Неметаллы.
	Неорганические и органические кислоты.
	Неорганические и органические основания.
25	Неорганические и органические амфотерные соединения.
26	Соли.
	Соли.
	Практическая работа №2 «Решение экспериментальных задач по теме «Вещества и
	их свойства»»
	Контрольная работа №2
	Химическая технология. Производство аммиака и метанола.
	Обобщение и систематизация знаний.
	Итоговая контрольная работа.
33	Химическая грамотность как компонент общей культуры человека.